CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth.

نویسندگان

  • D M Lang
  • B P Rubin
  • M E Schwab
  • C A Stuermer
چکیده

In vitro assays reveal that myelin and oligodendrocytes of the Xenopus spinal cord (SC) are--unlike corresponding components of the optic nerve/tectum (OT)--nonpermissive substrates for regenerating retinal axons. The number of growth cones that crossed SC oligodendrocytes is low but increases significantly (four- to fivefold) in the presence of the antibody IN-1, in which case their numbers are similar to the number of growth cones (approximately 60%) that cross OT oligodendrocytes with or without IN-1. IN-1 neutralizes neurite growth inhibitors (NI) of rat CNS myelin, indicating that mammalian-like NI are associated with Xenopus SC myelin and oligodendrocytes but not with the OT. IN-1 immunocytochemistry on sections supports this view: SC myelin was stained with IN-1, whereas OT myelin and PNS myelin were not.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive plasticity of Xenopus glial cells in vitro and after CNS fiber tract lesions in vivo.

Xenopus oligodendrocytes and aspects of their differentiation were analyzed in vitro and in vivo using cell- and stage-specific antibodies. Undifferentiated oligodendrocytes were derived from optic nerves or spinal cords. They divided in vitro, were of elongated shape, were glial fibrillary acidic protein and O4 positive, transiently exhibited several antigens including HNK-1 and L1, and promot...

متن کامل

Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro.

To study the interaction of neurons with CNS glial cells, dissociated sympathetic or sensory ganglion cells or fetal retinal cells were plated onto cultures of dissociated optic nerve glial cells of young rats. Whereas astrocytes favored neuron adhesion and neurite outgrowth, oligodendrocytes differed markedly in their properties as neuronal substrates. Immature (O4+, A2B5+, GalC-) oligodendroc...

متن کامل

Identification of two NOGO/RTN4 genes and analysis of Nogo-A expression in Xenopus laevis.

Myelin-associated axon growth inhibitors such as Nogo-A/RTN4-A impair axon regeneration in the adult mammalian central nervous system (CNS). Here, we describe the cloning and expression of two independent Xenopus laevis rtn4 orthologs. As in mammals, alternative transcripts are generated both through differential splicing and promoter usage, giving rise to Xenopus nogo-A, -B, -C and to a new is...

متن کامل

Rat CNS white matter, but not gray matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth.

In adult mammalian CNS, axons mostly fail to regenerate after injury, while in the PNS they often succeed in reaching their previous targets. Crucial differences are present in the local tissue microenvironment of CNS and PNS. To investigate the substrate properties of nervous tissue for neuronal adhesion and fiber growth, we used frozen sections of rat CNS and PNS as culture substrates for neu...

متن کامل

Retinal axon regeneration in the lizard Gallotia galloti in the presence of CNS myelin and oligodendrocytes.

Retinal ganglion cell (RGC) axons in lizards (reptiles) were found to regenerate after optic nerve injury. To determine whether regeneration occurs because the visual pathway has growth-supporting glia cells or whether RGC axons regrow despite the presence of neurite growth-inhibitory components, the substrate properties of lizard optic nerve myelin and of oligodendrocytes were analyzed in vitr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1995